Solution to Problem 16) a) The two homogeneous 15¢ order linear ODEs are f'(t) —
g(®) =0 and g'(t) + yg(t) + wif(t) = step(t). Prior to commencement of external
excitation by the step function at t = 0, i.e., during the interval t < 0, the system is
dormant, meaning that both the position f(t) and the velocity g(t) of the oscillator are
zero. This observation then dictates the initial conditions of the system at t = 0T as
f(OT)=f(0")=0 and g(0*) = g(07) = 0. This is because any discontinuity (or
jump) in either f(t) or g(t) at t = 0 causes the appearance of a §-function on the left-
hand-side of the governing equation, which is not compensated by a corresponding &§-
function on the right-hand side.

To solve the above coupled pair of 15¢ order differential equations during the time
interval t > 0, we use the fact that step(t) = 1 for t > 0, then rewrite the governing
equations in matrix form, as follows:
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Comparing Eq.(1) with Eq.(30) of Sec.10, we see that F(¢) = [f Eg é ‘1)]
B = [a?g —}/1] and C = [(1)] Consequently,
F(6) = (BC) + exp(—A"'BO)H,,  (fort > 0). @)
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We now find B~1C = l)// o 1/ Ol l l = l / Ol. Also, since A™! = I, we only
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need to diagonalize the matrix B in order to find the exponential function exp(—A~1Bt).
Diagonalization of B requires solving the characteristic equation to find the eigen-values
A1, followed by solving the equation BV = AV for each A in order to find the eigen-
vectors V; ,. We thus write
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|B—All = =P —yAl+wi=0 - A,="%y+%Uy?—-wé 3)
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B—-ADV =0 - X =0 - v,=—Av; » V= v;. (4)
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Considering that v, is arbitrary, we set it equal to 1, then form the matrix V whose
columns are the two eigen-vectors of B, namely,
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The matrix exp(—A~1Bt) is thus found to be

exp(—A~1Bt) = exp(—Bt) = Vexp(—At) V!
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Returning now to Eq.(2), and recalling that the initial conditions at t = 0% are
f(0) =0and g(0%) = 0, the coefficient vector H, can be determined as follows:

f(O*)l ) [1/0)5] ) l—1/wgl
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The complete solution of the coupled pair of differential equations for ¢t > 0 is thus
found from Eq.(2), after substitutions for B~1C and also from Egs.(6) and (7), to be

ho,
F(0*) = (B-1C) + H, — Hozl l:

_i_llexp( Ayt) — Ay exp(— Alt)
f(t) - (1)5 (ﬂ. _)-2)(1)0 (8a)
_ Malalexp(=41t) — exp(=2,0)]
(t) N A1 - Az)wo (8b)

Note that g(t) = f'(t), as expected.

b) In the under-damped case (y < 2w,), Eq.(3) yields 4,, = 1/2)/[1 + i\/(Za)o/]/)2 — 1].
In this case, Eq.(8a) may be streamlined as follows:

(&) = 2891 — exp(—tiye) (cos[ vy y)? =1 o] + S CoaPiel ).
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In the over-damped case (y > 2w,), Eq.(3) yields 4,, = 1/2)/[1 +1- (Zwo/y)z].
In this case, Eq.(8a) becomes

f() = Step(t){ — exp(—Yayt) (cosh[l/zy 1— Quw,/v)? t] + sinh{ 1/2—]1/ (120)(:/“;0)/2}/)%] )}

In the case of critical damping, y = 2w, and, therefore, 1, = 1, = %y. We must
then eliminate the term (4; — A,) in the denominators of f(t) and g(t) in Egs.(8), which
is causing these functions to diverge. This is done by factoring out exp(—A;t), then
approximating the remaining exp[(4; — 4,)t] by 1 + (1, — A,)t, as follows:

_ step(®) [, A1 exp[(A1-22)t]-2, _
f&) = 250 {1 - RO ep(—4,0)

step(t) A1 [1+(A1—A)t]-4
22 {1 - e R exp(—4,0)}
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_ step(t) _ (A1-22)+241 (A4 -2)t _
= [1 o 20]

- Sti)pg(t) [1- (1 + 0 ep(-A,0] = SE (1 (1 + Yoy exp(~y0)]



_ Aq;{exp[(A1-2)t] — 1} _

g(6) = 2O o) step(n
~ A1da[1+(A1-25)t - 1] .
= Toia? exp(—4;t) step(t)
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exp(—A;t) step(t) = (4;/w,)?t exp(—1;t) step(t)
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= (y/2w,)?*t exp(—¥syt) step(t) = t exp(—¥ayt) step(t).




